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Here, we explain things in details about pretext task,
architecture setup, provide some more results and include
more visual analysis. We also include tables which we were
not able to include in main paper due to space limitations.

• Section 1: Pretext tasks explanation used in our analy-
sis.

• Section 2: Training details about architectures,
datasets, and, other hyperparameters.

• Section 3: We show additional CKA maps, more re-
sults on HMDB51 dataset and more analysis on noise
robustness. We added some tables for Knowledge dis-
tillation experiments that were promised in the main
paper.

• Section 4: We extend the main table and compare with
previous state-of-the-art results on HMDB51 dataset.

1. Pretext Tasks Details
In this section, we go through each pretext task in more

detail that are used in our main work for analysis.

1.1. Spatial Transformation

Rotation Net [17] (RotNet) applies geometrical transfor-
mation on the clips. The videos are rotated by various an-
gles and the network predicts the class which it belongs to.
Since the clips are rotated, it helps the network to not con-
verge to a trivial solution.

Contrastive Video Representation Learning [27]
(CVRL) technique applies temporally coherent strong
spatial augmentations to the input video. The contrastive
framework brings closer the clips from same video and
repels the clip from another video. With no labels attached,
the network learns to cluster the videos of same class but
with different visual content.

1.2. Temporal Transformation

Video Clip Order Prediction [38] (VCOP) learns the
representation by predicting the permutation order. The net-
work is fed N clips from a video and then it predicts the
order from N! possible permutations.

Temporal Discriminative Learning [36] (TDL) In con-
trast to CVRL, TDL works on temporal triplets. It looks
into the temporal dimension of a video and targets them as
unique instances. The anchor and positive belongs to same
temporal interval and has a high degree of resemblance in
visual content compared to the negative.

1.3. Spatio-Temporal Transformation

Playback Rate Prediction [7] (PRP) has two branch,
generative and discriminative. Discriminative focuses on
the classifying the clip’s sampling rate, whereas, genera-
tive reconstructs the missing frame due to dilated sampling.
Thus, the first one concentrates on temporal aspect and sec-
ond one on spatial aspect.

Relative Speed Perception Network [6] (RSPNet) ap-
plies contrastive loss in both spatial and temporal domain.
Clips are samples from a same video to analyze the relative
speed between them. A triplet loss pulls the clips with same
speed together and pushes clips with different speed apart
in the embedding space. To learn spatial features, InfoNCE
loss [34] is applied. Clip from same video are positives
whereas clips from different videos are negatives.

Video MAE [31] (V-MAE) applies a spatio-temporal
tube masking to the input video. The pretext task is to re-
construct those missing tubes. Mean-squared error loss is
applied between the masked tokens and the reconstructed
tokens.
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2. Implementation Details

2.1. Architecture Details

Preliminary research has shown that 3D networks [33,
13] have outperformed 2D CNN variants on video recogni-
tion tasks. We looked into three types of capacity - small,
medium and big on the basis of number of trainable param-
eters. The architecture details of all networks are mentioned
in supplementary.
Small capacity networks: are resource efficient, imply-
ing they can be trained in larger batches within short span
of time. The network selection is done on the basis of su-
pervised training scores on Kinetics[18] and UCF101[19].
ShuffleNet V1 2.0X [39] utilizes point-wise group convo-
lutions and channel shuffling. SqueezeNet [15] reduces
the filter size and input channels to reduce the number of
parameters. MobileNet [28] has ResNet like architecture.
With its depthwise convolution, there’s a reduction in model
size and the network can go more deep.
Medium capacity networks: Following the conventional
3D architectures for self-supervised learning approaches
C3D, R21D and R3D are used in this study.
Big Capacity networks: Comparing across four
transformer architectures, ViViT [2] Timesformer [4],
VideoSwin [24] and MViT [11], we selected VideoSwin,
because it outperforms others on Kinetics 400 dataset.

Based on [19], we probed into the performance com-
parison of several versions of these architectures. We
choose 3D-ShuffleNet V1 2.0X, 3D-SqueezeNet, and 3D-
MobileNet V2 1.0X networks based on their performance
on Kinetics and UCF-101 dataset
3D-ShuffleNet V1 2.0X [39]: It utilize point-wise group
convolutions and channel shuffling and has 3 different
stages. Within a stage, the number of output channel re-
mains same. As we proceed to successive stage, the spa-
tiotemporal dimension is reduced by a factor of 2 and the
number of channels are increased by a factor of 2. V1 de-
notes version 1 of ShuffleNet and 2.0X denotes the 2 times
number of channels compared to original configuration.
3D-SqueezeNet [15]: It uses different alteration to reduce
the number of parameters as compared to the 2D version
which employs depthwise convolution. Those three modifi-
cations are: 1) Change the shape of filters from 3x3 to 1x1,
2) Input channels to 3x3 filters is reduced, and, 3) to main-
tain large activation maps high resolution is maintained till
deep layers.
3D-MobileNet V2 1.0X [28]: This network employs skip
connections like ResNet architecture in contrast to version
1. It helps the model in faster training and to build deeper
networks. There are also linear bottlenecks present in the
middle of layers. It helps in two ways as we reduce the
number of input channels: 1) With depthwise convolution,
the model size is reduced, and 2) at inference time, memory

usage is low. V2 denotes version 2 of mobilenet and 1.0X
uses the original parameter settings.

The architectures of medium capacity networks are de-
scribed as follows:
C3D [32]: This follows a simple architecture where two di-
mensional kernels have been extended to three dimensions.
This was outlined to capture spatiotemporal features from
videos. It has 8 convolutional layers, 5 pooling layers and 2
fully connected layers.
R3D [13]: The 2D CNN version of ResNet architecture is
recasted into 3D CNNs. It has skip connections that helps
make the gradient flow better as we build more deeper net-
works.
R(2+1)D [33]: In this architecture, 3D convolution is bro-
ken down into 2D and 1D convolution. 2D convolution is in
spatial dimension and 1D convolution is along the temporal
dimension. There are two benefits of this decomposition:
1) Increase in non-linearity as the number of layers have
increased, and, 2) Due to factorization of 3D kernels, the
optimization becomes easier.
VideoSwin [24] It is an inflated version of original Swin
[23] transformer architecture. The attention is now spatio-
temporal compared to previous which is only spatial. 3D
tokens are constructed from the input using patch partition
and sent to the network. The architecture includes four
stages of transformer block and patch merging layers.

2.2. Original and Noise Datasets

We have shown the examples of each dataset used in the
paper in Fig. 1.

The test datasets have different number of videos for dif-
ferent levels and types of noises. For Gaussian noise, we
manipulated all 3783 samples. For noise level 1, apart from
Gaussian, we had roughly 400 samples and all other levels
of severity, we have approximately 550 samples. An exam-
ple of each type of noise is shown in Fig. 2.

2.3. Pretext Tasks Configurations

Here, we briefly describe the configurations used in our
training. For VCOP, RotNet and PRP, we just manipulated
the type of augmentation from the original work. We ap-
plied Random Rotation, Resizing, Random Crop, Color Jit-
tering and Random Horizontal Flipping to the input clip.
CVRL has some extra data augmentation compare to the
previous ones we mentioned. It includes grayscale and
gamma adjustment as well. RSPNet also uses some tem-
poral augmentation. For finetuning the augmentations are
Resize and Center Crop for all the approaches.

The k-value for Momentum contrastive network is 16384
for RSPNet, it’s 500 for TDL.

2
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Figure 1: Example sample from each dataset.

Figure 2: Example frame sample for each noise Gaussian, Impulse, Shot and Speckle from left to right. Sample clips are
provided in supplementary.

2.4. Datasets

Here we discuss datasets in detail. We use Kinetics-
400 (K400) [18] and Something-Something V2 [12] for our
pre-training. For the downstream task evaluation, we per-
form our experiments on UCF-101 [29], HMDB-51 [21],
and Diving48 [22]. Since, the pretraining and finetun-
ing datasets are different, the performance variation will
provide us a better picture about how much meaning-
ful spatiotemporal features are learned by these networks.
K400 has approximately 240k videos distributed evenly
across 400 classes respectively. The approximate number
of videos in finetuning datasets are: 1) UCF101-10k, 2)
HMDB51-7k, and, 3)Diving48-16k. The datasets can be
categorized into two ways:
Appearance-based: Kinetics, UCF101 and HMDB51
comes under this category [8, 14]. Kinetics videos length
are generally 10s centered on human actions. It mainly
constitutes singular person action, person-to-person actions
and person-object action. For pre-training, we select a ran-
dom subset of videos and maintain equal distribution from
each class. Unless otherwise stated, pre-training is done on
K400-50k subset for all experiments.
Temporal-based: In Kinetics, we can estimate the action
by looking at a single frame [8, 14]. From Fig. 1, top two
rows, we can see the person with a javelin and basketball.
This information helps in class prediction. Looking at bot-
tom two rows (SSv2 and Diving48 respectively), we can’t

describe the activity class until we look into few continuous
frames. It shows that temporal aspect plays an important
role for these datasets, that’s why we categorize them into
temporal-based datasets.
UCF-101 [29] : It’s an action recognition dataset that spans
over 101 classes. There are around 13,300 videos, with
100+ videos per class. The length of videos in this dataset
varies from 4 to 10 seconds. It covers five types of cat-
egories: human-object interaction, human-human interac-
tion, playing musical instruments, body motion and sports.
HMDB-51 [21] : The number of videos in this dataset is
7000 comprising 51 classes. For each action, at least 70
videos are for training and 30 videos are for testing. The
actions are clubbed into five categories: 1) General facial
actions, 2) Facial actions with body movements, 3) General
body movements, 4) Body movements with object interac-
tion, and, 5) Body movements for human interaction.

3. Additional Results
Here, we will talk about some additional results, to fur-

ther strengthen the claims made in the main paper.

3.1. Preliminary Experiments

Pretext tasks evaluation Figure 3 depicts the hidden rep-
resentations of R21D network pretrained on different pre-
text tasks. Here the 50k subset of K-400 was used for pre-
training, and finetuned on UCF-101.
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Figure 3: Pretext tasks CKA maps for RSPNet, PRP, RotNet, VCOP, CVRL on K-400 50k subset using R21D network
(Left to right). R21D pretrained on K400 shows a semi-block structure for VCOP, indicating near-saturation condition of the
network on this pretext task. It shows a more prominent grid-based structure on CVRL and RSPNet instead. These observa-
tions corroborate the quantitative results, where pretraining on K400 for both CVRL and RSPNet gives better performance.

Figure 4: Training time CKA maps on 50, 100, 150, 200 epochs of R21D network on RSPNet pretext for K-400 10k subset
(Left to right). The block structure is visible from 50 epochs itself, which then darkens and becomes prominent by 200
epochs. With 10k subset, the saturation starts hitting at 100 epochs.

Non-contrastive Contrastive

Epochs VCOP Rot PRP CVRL TDL RSPNet

10k 18.9 15.0 9.2 22.2 9.9 30.2
30k 19.3 11.7 11.5 25.0 10.1 37.3
50k 17.3 12.2 10.2 29.3 9.5 40.2

Table 1: Evaluation of different pretext tasks on different
subset size on R21D network on HMDB51 dataset.

Linear Probing vs Finetuning Firstly, we discuss linear
probing (LP) vs finetuning (FT) results for different pretext
tasks and different architectures. From Table 2, we can see
that FT outperforms LP by a margin of approximately 20%
and 40% on ShuffleNet and R21D respectively. Thus, we
perform finetuning for all of our analysis.

Network Parameters We have shown the performance
across different architectures in Table 3. ShuffleNet and
R21D performs the best across small and medium capac-
ity networks in most of the pretext tasks. Thus, we choose
ShuffleNet and R21D for our benchmark analysis.

Network LP FT RotNet VCOP PRP

Shuffle ✓ 4.3 12.3 2.8
✓ 16.6 40.8 21.9

R21D ✓ 2.7 12.2 4.6
✓ 41.2 51.5 46.2

Table 2: Downstream accuracy classification on UCF-101
dataset. FT: Finetuning LP: Linear Probing

3.2. Effect of dataset size

In Table 1, we extend results for different pretext tasks
on HMDB51 dataset. Similar to UCF101, the scale in sub-
set size doesn’t reciprocate to gain in performance for all
pretext tasks on HMDB51 dataset. From Figures 5 and 6,
we see that performance increase for Swin by a good mar-
gin, whereas in case of ShuffleNet and R21D it’s relatively
less beyond 50k subset.

Training time Table 4 shows VideoSwin saturates at 150
epochs on UCF101 whereas CNN architectures saturates
earlier (100 epochs) which reflects limitation of model ca-
pacity. Figure 4 shows the emergence of block structures for
R21D network trained on RSPNet for K400 10k. The sat-
uration point has reached earlier around 100 epochs which

4
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Networks Parameters GFLOPs Rot† VCOP † PRP† RSPNet
ShuffleNet 4.6M 1.1 42.2 41.6 41.1 68.8
MobileNet 3.1M 1.1 38.0 40.0 37.4 63.1
SqueezeNet 1.9M 1.8 41.3 41.4 39.2 62.9

C3D 27.7M 77.2 57.7 54.5 58.1 67.6
R3D 14.4M 39.8 51.1 50.7 52.1 62.1

R(2+1)D 14.4M 42.9 46.9 56.8 58.9 78.0

Table 3: Comparison of FLOPs and trainable parameters for each network on UCF101 dataset. † - pretraining on Kinetics
700 [5].

Figure 5: Multiple architectures and data subsets on
UCF101. Pretext task is RSPNet. (x-axis: subset size,
y-axis: Top-1 Accuracy) Here, 10 means 10k dataset sub-
set, 30 means 30k and so on.

Figure 6: Multiple architectures and data subsets on
HMDB51. Pretext task is RSPNet. (x-axis: subset size,
y-axis: Top-1 Accuracy) Here, 10 means 10k dataset sub-
set, 30 means 30k and so on.

supports the hypothesis in main work that CNN architec-
tures mostly saturates around 100 epochs. We see similar
pattern even after increasing the dataset size.

3.3. Impact of task complexity

Figures 7 shows for ShuffleNet dark patterns with in-
crease in complexity. R21D shows staggering grids. It sup-
ports our hypothesis that model capacity plays an impor-
tant role to learn meaningful features and always increasing
the complexity doesn’t reciprocate to better spatio-temporal
features.

3.4. Effect of data distrbituion

Figure 9 illustrates CKA maps for networks pretrained
on different source datasets - for R21D pretrained on K400-
50k on VCOP and CVRL respectively. The stark difference
in semi-block structure of spatial (VCOP) vs grid-like struc-
ture of spatio-temporal (CVRL) shows spatio-temporal out-
performs spatial pretext task.

3.5. Robustness of SSL tasks

Table 5 shows performance of each pretext on each type
of noise for severity level 1. Fig. 8 shows a relative decrease
in performance for three different severity level on UCF101
dataset. Non-contrastive tasks are more robust than con-
trastive on average even at different severity levels.

3.6. Feature Analysis

We employ knowledge distillation to evaluate how com-
plementary information from different datasets can be used
to train a student model that could take advantage of this
in terms of performance gain and training time reduc-
tion. Here we show the numbers quantitatively. Table 6
shows smaller architecture leans complementary informa-
tion whereas bigger architecture depends on pretext task.
Table 7 shows that for each pretext task, we learn com-
plimentary information from two different source datasets.
Thus, student always outperforms the teachers. Table 8
shows that distilling knowledge from a spatial and a tem-
poral task outperforms the standalone spatio-temporal task
in both contrastive and non-contrastive case.
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Figure 7: Complexity CKA maps PRP ShuffleNet (Left) and R21D (Right) network increasing complexity from 2 to 4 (Left
to right). ShuffleNet has lower performance than R21D, and it shows darkest patterns when complexity is increased from 3
to 4. For both of these complexities, R21D shows staggering grids.

Epochs Shuffle R21D Swin

10k 30k 50k 100k 10k 30k 50k 100k 10k 30k 50k 100k
50 59.1 66.3 68.1 68.9 66.8 71.1 75.0 77.2 - 40.4 44.9 52.0

100 60.3 67.6 68.7 69.0 69.5 75.2 76.1 80.0 37.2 44.3 49.6 58.5
150 61.8 66.7 69.4 69.7 69.5 76.6 76.5 78.8 37.9 46.2 50.7 61.3
200 61.5 68.2 68.5 69.9 69.6 76.6 77.4 78.3 36.8 46.3 52.5 61.5

Table 4: RSPNet with different subset size on ShuffleNet/R21D/VideoSwin on UCF101 dataset.

Figure 8: Relative decrease in performance at three different severity levels in increasing order from left to right. The
pretext tasks is depicted by following colors - RotNet, VCOP, PRP, CVRL, TDL, RSPNet.

Figure 9: Out-of-distribution CKA maps: on VCOP
and CVRL for R21D Network (Left to right). The semi-
block structure of VCOP contrasts sharply with the grid-like
structure of CVRL.

3.7. Clip retrieval

In Table 9, we show clip retrieval across different archi-
tectures on HMDB51 and UCF101 dataset. Amongst small

Non-contrastive Contrastive

RotNet VCOP PRP CVRL TDL RSP

No Noise 41.2 51.5 46.2 61.2 31.7 78.0
Gaussian 40.9 47.0 14.6 12.7 28.0 16.7
Impulse 38.1 30.5 5.4 3.5 18.8 8.5
Shot 33.4 45.1 20.9 26.4 21.5 45.1
Speckle 34.7 43.9 14.4 13.1 24.7 27.0

Table 5: Analysis of all pretext tasks with noise severity
level 1 on R21D network on UCF101 dataset.

capacity networks, ShuffleNet outperforms others and in
medium-capacity R21D outperforms.

4. Main Table

In this section, we firstly expand the Table 6 (main paper)
including results on HMDB51 dataset (Table 10). Knowl-
edge distilled network discussed in the main paper still
shows competitive performance on HMDB51. Going in
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TC↓ RotNet VCOP PRP

T1 20.1/48.3 41.6/56.8 24.2/38.9
T2 20.2/58.3 41.8/54.8 18.1/44.4
T3 16.6/41.2 40.6/55.6 21.9/46.2

S 75.0/56.6 75.4/43.5 76.1/61.0

Table 6: Complexity variation with at three levels as teach-
ers (T1, T2, T3) for all three pretext tasks. TC: Task
complexity. Results are shown on UCF101 with Shuf-
fleNet/R21D as backbones.

K400 (T1) SSV2(T2) Student

RotNet 36.2 42.5 59.8
VCOP 50.4 59.7 67.6
CVRL 56.9 34.7 66.6
RSPNet 76.4 69.5 80.2

Table 7: Out-of-Distribution settings on UCF101 dataset
using R21D network with teachers as different source
datasets.

S (T1) T(T2) Student

Non-Contrastive RotNet VCOP 61.1
Contrastive CVRL TDL 70.3

Table 8: Knowledge distillation across different pretext
tasks. Teachers: ShuffleNet; Student: ShuffleNet.

Network Top@1 Top@5

Squeeze 15.9/38.5 37.6/56.5
Mobile 16.2/37.4 36.5/55.6
Shuffle 19.3/43.1 42.0/62.1

C3D 19.9/43.2 43.4/61.6
R3D 19.3/40.4 42.5/60.2
R21D 18.2/42.7 40.1/62.8

Table 9: Top K Clip Retrieval on HMDB51/UCF101 across
different architectures for RSPNet.

depth, the works outperforming us are AVTS[20], GDT [26]
in multi-modal and VIMPAC [30], VideoMAE [31], TCLR
[9] and CVRL [27] in single modality. AVTS and GDT uses
two modalities, have more number of frames and AVTS
also uses a bigger spatial size. Coming to Generative-based,
both VIMPAC and VideoMAE uses a bigger backbone ar-
chitecture. CVRL uses a longer temporal sequence and big-
ger frame resolution compared to ours and TCLR utilize 64
effective frames. Thus, the performance on HMDB51 is
still competitive.
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Approach Venue NxW/H Backbone Pre-training UCF101 HMDB51
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VideoMAE [31] NeurIPS’22 16x224 ViT-B K400 91.3 62.6
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Table 10: Comparison with previous approaches pre-trained on K400. Ours ( ∗ best performing) is RSPNet pretrained on
30k subset of K400. † modified backbone.
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