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Abstract

Self-supervised learning is an effective way for label-
free model pre-training, especially in the video domain
where labeling is expensive. Existing self-supervised works
in the video domain use varying experimental setups to
demonstrate their effectiveness and comparison across ap-
proaches becomes challenging with no standard bench-
mark. In this work, we first provide a benchmark that
enables a comparison of existing approaches on the same
ground. Next, we study five different aspects of self-
supervised learning important for videos; 1) dataset size,
2) complexity, 3) data distribution, 4) data noise, and, 5)
feature analysis. To facilitate this study, we focus on seven
different methods along with seven different network archi-
tectures and perform an extensive set of experiments on 5
different datasets with an evaluation of two different down-
stream tasks. We present several interesting insights from
this study which span across different properties of pretrain-
ing and target datasets, pretext-tasks, and model architec-
tures among others. We further put some of these insights to
the real test and propose an approach that requires a lim-
ited amount of training data and outperforms existing state-
of-the-art approaches which use 10x pretraining data. We
believe this work will pave the way for researchers to a bet-
ter understanding of self-supervised pretext tasks in video
representation learning.

1. Introduction
Deep learning models require large amount of labeled

data for their training. Obtaining annotations at large-scale
needs a lot of effort and it becomes even more challeng-
ing as we shift from image to video domain. There are
several interesting directions focusing on this issue such as
domain adaptation [61], knowledge distillation [17], semi-
supervised learning [64], self-supervision [26] and weakly-
supervised learning [47], which attempts to rely on the
knowledge learned from existing source datasets and trans-
fer it to new target datasets with minimal labels. Among
these approaches, self-supervised learning use pretext task

as supervisory signal and does not require any labels on
source datasets which makes it more favorable.

In recent years, we have seen a great progress in self-
supervised learning (SSL) in video domain [62, 27, 10, 58,
41, 8]. More recently, the focus is more towards context-
based learning which involves modifying input data such
that to derive a classification [60, 11, 62, 27], reconstruc-
tion [10, 8] or generative [56, 49, 21, 53, 38] signal which
can be used as a learning objective. The main focus of these
works is designing a pretext task which is computationally
inexpensive and which provides strong supervisory signal
such that the model learns meaningful spatio-temporal fea-
tures.

Despite this great progress, it is non-trivial to compare
these approaches against each other due to lack of stan-
dard protocols. These methods are evaluated under differ-
ent conditions and there is no standard benchmark to eval-
uate the fair effectiveness of these methods. A recent study
[52] attempts to take a step towards this direction, but it is
mainly focused on down-stream learning, without exploring
the self-supervision aspect which is one of the main goals
in our study. In this work, we present a benchmark where
important self-supervised pre-training parameters are kept
consistent across methods for a fair comparison. With the
help of this benchmark, we study several critical aspects
which are important for self-supervised learning; 1) effect
of pretraining dataset size, 2) task complexity, 3) general-
ization under distribution shift, 4) robustness against data
noise, 5) properties of learned features.

The proposed benchmark includes a large-scale assess-
ment of context-based representative self-supervised meth-
ods for video representation learning. We analyze two dif-
ferent aspects: 1) learning objective which includes con-
trastive vs non-contrastive, and 2) data transformation
that comprises of three categories namely, spatial, tempo-
ral, and spatio-temporal. We study seven different pre-
text tasks with seven different model architectures and per-
form our experiments on five different video action recogni-
tion datasets and evaluate these approaches on two different
down-stream tasks, action recognition and video retrieval.

We observe some interesting insights in this benchmark.
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Figure 1: Overview of proposed benchmark. We study five different aspects in this benchmark study. Starting from left,
1) we show the analysis of effect of dataset size vs training time. As the dataset size increases, variation in performance
decreases even with longer training time, 2) We show effect of task complexity. Bottom figure shows one use case of how
complexity increases for RotNet task, and, top figure shows how the performance varies for R21D network, 3) With different
data distribution shifts, third sub-figure shows the impact of target data distribution on the source data, 4) We look into another
data distribution shift due to introduction of noise. We see how non-contrastive tasks are more robust than contrastive ones
even with increasing level of severity of noise. Bottom part shows an example for each type of noise. Clips are provided
in supplementary, and, 5) Finally, we further analyze whether the features learn complimentary information or not. In this
sub-figure, we show that using different architectures as teachers, we can substantially improve the performance even in
low-data regime.

Some of the key insights are; 1) Contrastive tasks are fast
learners but are less robust against data noise, 2) there is no
benefit of increasing dataset size for smaller models once
model capacity is reached, 3) temporal based pretext tasks
are more difficult to solve than spatial and spatio-temporal,
5) spatio-temporal task can solve the pretext task indepen-
dent of data distribution shifts, and finally, 6) we empirically
show that these pretext tasks learn complementary features
across factors such as model architecture, dataset distribu-
tions, dataset size, and pretext task.

Our contributions are threefold:

• We present a benchmark for self-supervised video rep-
resentation learning to compare different pretext tasks
under a similar experimental setup.

• We perform extensive analysis on five important fac-
tors for self-supervised learning in videos; 1) dataset
size, 2) task complexity, 3) distribution shift, 4) data
noise, and, 5) feature analysis.

• Finally, we put some of our insights from this study
to test and propose a simple approach which outper-
forms existing state-of-the-art methods on video action
recognition with limited amount of pretraining data.

2. Related work
Self-supervised learning There are several works in the
domain of self-supervised learning for video representation
learning [26, 46]. These approaches can be grouped into

two main categories on the basis of pretext task: 1) context-
based [29, 59, 2, 16, 60, 51, 63, 11, 25, 58, 41, 8, 13, 20, 42],
and 2) cross-modal [40, 44, 1]. Cross-modal approaches
use multiple modalities such as audio, video, optical flow
and camera positions, and rely on consistencies across these
modalities. Context-based learning exploits data transfor-
mations to derive supervisory signals for training the model.
Context-based pretraining tasks have evolved a lot in the
past few years. Our work explores the domain of how much
variation in learned representations under different transfor-
mations. In contrast to other approaches, context-based ap-
proaches exploit the spatial and temporal information inde-
pendently by several transformations [36, 16, 62, 6, 60, 41,
58]. Recent works have started to transform the spatial and
temporal domain together [29, 35, 51, 10, 8]. Incorporat-
ing multiple modalities improves performance, but, it’s not
available for all datasets, especially large-scale datasets. In
this work, we restrict our focus to single-modality (RGB)
approaches.

Self-supervised benchmarking There are some prior ef-
forts focusing on benchmarking self-supervised learning
in the image domain. In [18], the authors provide a de-
tailed analysis of image-based self-supervised learning ap-
proaches and study how dataset size scaling affects the
learned representations. Similarly in [30], the authors an-
alyze how different model architectures play a role in visual
self-supervised learning. In both these works, the authors
did not focus on the importance of various pretext tasks

2
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themselves but only showed how certain pretext tasks can
be improved. Therefore, their main focus was on down-
stream tasks rather than pretext learning. We, on the other
hand, study different pretext tasks and analyze how vari-
ous aspects affect feature learning. Moreover, these works
are focused on the image domain, whereas we focus on
the video domain. In a recent work, [15], a study was
performed to better understand unsupervised learning in
the video domain, it basically explored the use of several
pre-text tasks from the image domain and applied them to
videos. We are not merely focusing on down-stream tasks
and our attention is on the self-supervised aspect which
includes factors such as data subset size, task complexity,
dataset distribution, and noise robustness.

3. Self-supervised configurations
We first describe the pretext tasks used in our study along

with their categorization. Then we discuss the details of
this benchmark including network architectures, datasets,
downstream tasks and evaluations.

3.1. Tasks categorization

We analyze two different aspects of video pretext tasks:
1) transformations applied to data, and 2) learning objective.
Data transformations include, spatial-based (S), temporal-
based (T) and spatio-temporal (ST). Spatial transformations
include reshuffling of spatial patches, temporal consistent
data augmentation, or rotation of images/patches. Temporal
tasks involve permutation classification of frames/clip, or-
der verification, clips sampling at different paces, or, con-
trastive learning from temporal triplets. Spatio-temporal
tasks include those in which we modify both of these pa-
rameters simultaneously. This includes dilated sampling
and simultaneous frame reconstruction, shuffling spatial
and temporal domains, or, speed prediction, and contrastive
visual features. Learning objectives can be either con-
trastive [9] or non-contrastive such as [53].

Following this categorization, we select at least two rep-
resentative pretext tasks from each transformation category,
one contrastive and one non-contrastive. We study the fol-
lowing pretext tasks in this study; RotNet (Rot) [27], Video
Clip Order Prediction (VCOP) [62], Playback Rate Predic-
tion (PRP) [10], Spatiotemporal Contrastive Video Repre-
sentation Learning (CVRL) [41], Temporal Discriminative
Learning (TDL) [58], Relative Speed Perception network
(RSPNet) [8], and V-MAE [53]. In concise summary, 1)
RotNet applies geometrical transformation on the data, 2)
VCOP learns the representation by predicting the permu-
tation order, 3) PRP has two branches, discriminative and
generative that concentrate on temporal and spatial aspect
respectively, 4) CVRL learns to cluster the video of the same
class with strong temporal coherent augmentations, 5) TDL
works on temporal triplets and minimizes the gap between

anchor and positive on the basis of visual content, 6) RSP-
Net applies contrastive loss in both spatial and temporal do-
main, and, 7) V-MAE [53] mask tokens of the input video
and it tries to reconstruct those missing patches using an
encoder-decoder architecture. More details are provided in
supplementary.

3.2. Benchmark details

Datasets: We experiment with two different dataset types,
1) where appearance is more important, and 2) where time
is more important. For appearance based, we use Kinetics-
400 [28], UCF101 [48], and HMDB51 [32], where ap-
pearance is more important (recognize activity with a sin-
gle frame) than temporal aspect, and for temporal aspect,
we use Something Something-V2 [19] and Diving48 [33],
where temporal information plays a significant role (require
few frames to recognize activity). More details are in the
supplementary.

Spatio-temporal architectures We analyze three differ-
ent network capacities, 1) small-capacity, 2) medium ca-
pacity, and 3) large-capacity. For small capacity, we
study the following architectures; ShuffleNet V1 2.0X [65],
SqueezeNet [24], and MobileNet [43]. For medium capac-
ity we focus on conventional 3D architectures: C3D [54],
R3D [22], and, R(2+1)D [55] (R21D); . And, for big-
capacity architectures we study VideoSwin [34], which is
a transformer-based model.

Downstream tasks We show results and analysis on two
different downstream tasks - action recognition and clip re-
trieval. These two are the most prominent tasks in the field
of self-supervised learning in videos.

Evaluation and analysis We use top-1 accuracy for ac-
tion recognition which indicates whether the class predic-
tion is correct or not. Clip retrieval calculates the top-k hits
for nearest neighbor search, where k = {1, 5, 10, 20, 50}.
For robustness performance, we calculate the relative ro-
bustness score (Rs) using original accuracy on clean test
set (Ac) and perturbed accuracy on noisy test set(Ap) as
Rs =

Ac−Ap

Ac
. We also provide qualitative feature analy-

sis with the help of centered kernel alignment (CKA) maps
[37]. CKA maps illustrate the model’s hidden represen-
tations, finding characteristic block structures in models.
There are two dominant properties of CKA maps: 1) Fea-
ture similarity: Lighter regions in map indicates more
similar features between layers than darker regions. 2)
Grid patterns: Two main patterns stand out, a staggering
grid, which indicates models are capable of learning more,
and, distinctive light/dark block patterns meaning network
reached its saturation point.

3
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4. Benchmark analysis
In this section, first, we perform some preliminary exper-

iments to compare each pretext task under identical condi-
tions. Then, we further perform analysis across the follow-
ing five aspects in the next subsections.

Effect of pretraining dataset size: In self-supervised
learning, a natural question to ask is whether dataset size
plays any role in the performance of downstream tasks. It is
important to study if the increase in the size of the pretrain-
ing dataset will proportionally reciprocate in performance
improvement. Also, a general trend is to train models for
a very long duration at the pre-training stage. We investi-
gate if the longer duration actually impacts the gain in per-
formance. We look across different stages of training for
multiple architectures and across different pretext tasks.

Impact of task complexity: Some of the existing works
show that increasing complexity leads to better represen-
tation learning, and if the complexity is decreased, the net-
work will optimize to suboptimal solutions. We analyze this
aspect in more detail with several tasks and different model
architectures.

Effect of data distribution: Existing self-supervised
methods perform evaluations on K400 and UCF101
datasets. Both these datasets fall into the same visual cate-
gory with heavy appearance bias. However, we divert our
attention towards datasets where the temporal dimension
plays an important role such as SSv2 and Diving48.

Robustness of SSL tasks: In this aspect, we study the ro-
bustness qualities of SSL methods against data noise [23].
We analyze which factors play a key role in the robustness
of these methods against such distribution shifts.

Feature analysis: Finally, we look into feature space and
analyze whether the learned representations are complimen-
tary in nature when models are trained under different pro-
tocols.

4.1. Preliminary Experiments

First, we perform some preliminary experiments to ana-
lyze different architecture backbones, clip length, and eval-
uation with linear probing vs finetuning, and, finally layout
discussion on the evaluation of different pretext tasks under
the same constraints.
Backbone architectures: Looking into smaller and
medium capacity networks in Figure 2, ShuffleNet out-
performs among smaller networks, whereas considering
the trade-off between the number of trainable parameters

SqueezeNet [24]

ShuffleNet [65]

MobileNet [43]

C3D [54]

R3D [22]

R21D [55]

GLOPs

30

40

50

60

70

1.00 1.25 1.50 1.75 2.00

Figure 2: Variation in performance for different architec-
tures. X-axis shows the relative floating point operations
and Y-axis shows the Top-1 Accuracy.

Non-Contrastive Contrastive
Rot VCOP PRP V-MAE CVRL TDL RSP
(S) (T) (ST) (ST) (S) (T) (ST)

Shuffle 16.6 40.8 21.9 - 62.3 12.4 68.8
R21D 41.2 51.5 46.2 76.2 61.2 31.7 78.0

Reported ∗ 72.1 68.4 72.4 91.3 94.4 84.9 93.7

Table 1: Comparison across different pretext tasks pre-
train on K400-50k subset and finetuned on UCF101 dataset
against reported results in the original paper.

and performance R21D performs better in medium net-
work category. Among big capacity networks, we look into
few recent end-to-end video-based transformer networks
[4, 14, 7, 34], and Video Swin [34] outperforms other ar-
chitectures by a margin of 1-3% on K400.
Clip length: Different pretext tasks take 16 or 32 frames
as input clip length. We experimented with both 16 and
32 clips length and observe that 32 frames mostly provide
better performance. However, to maintain consistency with
most of the approaches and reduce computation costs, we
use 16 frames in our experiments.
Linear probe vs finetuning: In the linear probe, we train
only the linear layers attached for classification while freez-
ing other network weights, whereas in finetuning the whole
network is trained end-to-end. In our preliminary exper-
iments we use Kinetics-400 for pretraining and UCF-101
as the target dataset. On several pretext tasks, we observe
an average drop of 25% (ShuffleNet) and 40% (R21D) in
performance when comparing linear probe with finetuning.
However, we do not usually observe this significant drop
when both the pretraining and target datasets are the same
[46]. It indicates that finetuning is important for the model
to adapt to downstream dataset in case it is different. There-
fore, some of the existing works [52] rely on finetuning
when the source and target datasets are different. Since we
are interested in cross-dataset learning, we perform finetun-
ing on all our downstream datasets.
Pretext tasks evaluation: A comparison of pretext tasks

4
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Non-Contrastive Contrastive
Subset Rot VCOP PRP CVRL TDL RSPNet

10k 37.6 46.3 17.5 55.9 31.1 70.9
30k 36.2 50.4 42.7 56.9 30.9 76.4
50k 41.2 51.5 46.2 61.2 30.2 78.0

Table 2: Evaluation of different pretext tasks on different
subset size on R21D network.

on two different backbones is shown in Table 1. We ob-
serve that most of the contrastive tasks outperform non-
contrastive tasks when they are trained under different con-
straints (row 3). However, that is not the case when we
compare them under the same constraints (row 1-2). Sim-
ilarly, spatial and spatio-temporal tasks have a similar per-
formance from reported results. However, spatio-temporal
pretext tasks outperform spatial ones by a large margin
when we keep pre-training constraints similar. This sup-
ports our hypothesis that it is important to experiment un-
der similar constraints for a fair evaluation of different ap-
proaches.

4.2. Effect of dataset-size

We first analyze the effects of pre-training data size vari-
ation. The network trains on four subsets of the K400
dataset: 10,000 (10k), 30,000 (30k), 50,000 (50k), and
100,000 (100k). The number of videos per class is the same.
The smaller pre-training dataset is a subset of the bigger
pre-training dataset size (i.e. 10k ⊂ 30k and so on). We
look into three aspects regarding dependence on pre-train
subset size: a) behavior of different pretext tasks with the
increase in pre-train dataset subset, b) performance across
the different capacity of backbones, and, c) the effect of
training time across different pretext tasks.
Observations: From Table 2, we observe that apart from
TDL each pretext task performance improves with an in-
crease in subset size. If we look into specific pretext task
transformation category (Table 2), the most gain with an in-
crease in data is for spatio-temporal tasks ( 13%), whereas
the least gain is for temporal pretext tasks ( 3%). Looking
across different architectures in Figure 3, there’s a minimal
gain for R21D and ShuffleNet beyond increasing dataset
size from 30k subset against VideoSwin which improves
with an increase in dataset size which relates to similar be-
havior like image models discussed in [18]. Analyzing ef-
fect of duration of training across different pretext tasks,
in Table 3, the performance gain is minimal (<1.5%) af-
ter training for more than 100 epochs. Comparing con-
trastive and non-contrastive approaches, the gain in con-
trastive based approaches is on average 1% compared to 5%
for non-contrastive tasks beyond 100 epochs of training.
Inference: (i) Spatio-temporal pretext tasks improve most
with increment in dataset size and are most dependent on
it than others since it involves transformation along both

R21D (10k) vs R21D (10k) R21D (30k) vs R21D (30k)

R21D (50k) vs R21D (50k) R21D (100k) vs R21D (100k)

La
ye

rs
La

ye
rs

Figure 3: Left: dataset subset performance for three dif-
ferent architectures on RSPNet pretext task (x-axis: subset
size, y-axis: Top-1 Accuracy). Here, 10 means 10k dataset
subset, 30 means 30k and so on. Right: CKA maps for
RSPNet on different subsets with R21D backbone.

Non-Contrastive Contrastive
Epochs Rot VCOP PRP CVRL TDL RSPNet

50 35.4 52.2 24.1 55.7 32.1 75.0
100 37.3 52.3 34.8 58.5 31.3 76.1
150 40.7 51.3 46.7 60.2 31.5 76.5
200 40.9 52.8 45.0 60.5 30.2 77.4

Table 3: Performance of different pretext tasks on R21D
over the training with 50k pre-training subset size.

TC↓ S T ST
C1 20.1/48.3 41.6/56.8 24.2/38.9
C2 20.2/58.3 41.8/54.8 18.1/44.4
C3 16.6/41.2 40.6/55.6 21.9/46.2

Table 4: Complexity Variation. TC: Task complexity. Re-
sults are shown on UCF101 with ShuffleNet/R21D back-
bone.

axes: appearance (spatial) and motion (temporal). (ii) Ben-
efit of more training data reaches its limitation based on
model capacity. Smaller networks saturate according to
their learning capability. (iii) Contrastive tasks are fast
learners against non-contrastive and reach their potential
in a relatively shorter duration of training.

4.3. Impact of change in task complexity

Next, we study the effect of task complexity. In this
aspect, we analyze only non-contrastive tasks as it is non-
trivial to define task complexity for contrastive-based ap-
proaches. We analyze three different complexities (C1, C2,
C3) for each task. The variation in complexity for each task
is briefly discussed as follows: a) RotNet: vary the number
of rotations between 2 to 4, b) VCOP: increase the num-
ber of shuffle clips from 3 to 5, and, c) PRP: modify the
dilation sampling rates from 2 to 4 classes. We investi-
gate the following aspects here: a) does increase in com-
plexity means better spatio-temporal features learned at pre-
training stage? b) does the capacity of architecture plays
any role?
Observations: From Table 4, comparing across rows we
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observe ShuffleNet performance doesn’t improve much or
degrade significantly if the complexity of the task is in-
creased. CKA maps show the structure transforms from
staggering grids to a multi-block pattern indicating satura-
tion with an increase in complexity. In between different
categories of transformation, performance improves with
complexity for the bigger model in the case of the spatio-
temporal task. Between ShuffleNet and R21D, R21D gives
staggering grids against dark block patterns for ShuffleNet
which shows the model can still learn better features. CKA
maps are provided in the supplementary.
Inference: (i) Increase in pretext task complexity doesn’t
always reciprocate to better spatio-temporal feature learn-
ing. It is dependent on the pretext task and also the model
capacity. (ii) If higher complexity improves features learn-
ing, the model should also have the capacity, otherwise the
task will be too difficult for the model to learn meaningful
representations.

4.4. Effect of dataset distribution

Shifting our focus to datasets which have more hidden
cues in the temporal aspect, we add pre-training on SSv2
and finetuning on Diving48 to our experiments. We an-
swer the following questions in this section; a) does the cat-
egorization of pretext-task matter on source (pre-training)
and target (downstream) datasets? b) what is the impact of
source dataset when the pretext task focuses only on a sin-
gle task either spatial or temporal?
Observations: Looking into Figure 4, we observe that
spatio-temporal pretext task outperforms other pretext tasks
on both target (downstream) datasets UCF101 and DV48 by
a margin of 15-40% and 10-13% respectively whether the
source datasets is K400 or SSv2. Comparing, spatial and
temporal-based pretext tasks, we see that they are majorly
dependent on source datasets. Looking at Figure 4, per-
formance is better on both target datasets if source dataset
has the same underlying properties as the pre-text task is
trying to learn. Furthermore, the spatial task is more de-
pendent on the source dataset, since the relative drop on
both UCF101 and DV48 for CVRL is significant (40% and
30% respectively), when the source dataset is SSv2 against
K400. However, in the case of the temporal task, the drop is
15% and 10% respectively when the source dataset is K400
against SSv2.
Inference: (i) Spatio-temporal pretext task learns better
features independent of source and target data distribution.
(ii) Spatial and temporal pre-text tasks are better learners
when source data distribution belongs to spatial and tem-
poral respectively. (iii) Temporal pretext task prevails when
target data is temporal, whereas, in the case of spatial, tasks
are dependent upon source data distribution. Spatial pretext
doesn’t gain much information if source data is SSv2 (tem-
poral) since motion plays a major role, but the temporal

(a) UCF101 (b) DV48

Figure 4: Pretraining on K400 and SSv2 with 30k subset
size, finetuning on UCF101/Diving48 using R21D network.
Here, S, T, and ST mean spatial(CVRL), temporal(VCOP),
and, spatio-temporal(RSPNet) respectively. X-axis shows
source dataset and Y-axis shows Top-1 accuracy.

Non-Contrastive Contrastive
Rot VCOP PRP CVRL TDL RSP Avg.

R21D 10.7 19.0 70.1 78.4 26.7 68.8 45.6
Shuffle 28.3 28.4 22.8 51.9 43.5 28.6 33.9

Table 5: Analysis on the relative decrease in % performance
across different pretext tasks on noisy UCF101 dataset. The
performance is averaged over 4 noises.

task still learns well from K400 (appearance).

4.5. Robustness of SSL tasks

Similar to OOD datasets, introducing noise also shifts
the distribution of datasets. We evaluate models on differ-
ent types of noises introduced in [45] with different severity
levels on UCF101 test dataset. Specifically, we probe into
four different types of appearance-based noises: Gaussian,
Shot, Impulse and Speckle [23]. Here we look into follow-
ing aspects: a) how robust different categorization of pretext
tasks are? b) is the network’s architecture dependent on the
noise in the dataset? In the main paper, we only discuss one
severity level and have provided detailed analysis of multi-
ple severity levels in the supplementary.
Observations: From Table 5, we observe that the relative
drop in performance for contrastive tasks is more than non-
contrastive tasks for both R21D and ShuffleNet backbone.
The most and least robust models are RotNet-R21D and
PRP-R21D with 10.7% and 70.1% relative decrease. From
Figure 5, we can observe looking across different severity
levels for each type of noise ShuffleNet is more robust than
R21D.
Inference: (i) Contrastive approaches are less robust to
noise when compared with non-contrastive approaches. (ii)
Looking at the average robustness score, ShuffleNet turns
out to be more robust than R21D despite being smaller in
terms of the number of parameters.

4.6. Feature analysis

We further analyze the learned features by these pretext
tasks under different configurations. We specifically focus
on understanding the complementary nature of these fea-
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Figure 5: Performance with different types of noises. ShuffleNet and R21D scores are shown by blue and red lines respec-
tively.

(A) Effect of dataset size (B) Task complexity (C) Out-of-Distribution (D) Pretext Task
R

ot
N

et
VC

O
P

PR
P

ShuffleNet R21D

10
k

30
k

10
0k

T2-Shuffle ST-ShuffleT1-R21D T1-C1 T2-C2 T3-C3 ST

Contrastive

T1-CVRL (S)
T2- TDL (T)

Non-Contrastive

T1- RotNet (S)
T2- VCOP (T)

T1 T1
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T2

T2

T2

ST

ST

ST

ST
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Figure 6: Feature analysis overview. Brief details for each setup: (A) Effect of dataset size: Teachers are different archi-
tectures for a single subset. (B) Task Complexity: Teachers are multiple complexities across the same task. (C) Out-of-
Distribution: Models from different source datasets as teachers. (D) Pretext Tasks: Spatial and temporal task networks are
teachers.

(a) UCF101 (b) HMDB51

Figure 7: KD using teachers trained on different subset
sizes on RSPNet. Student: ShuffleNet UCF101/HMDB51.
Here T1 is Teacher -1 (shufflenet) and T2-is teacher 2
(R21D).

tures. We employ knowledge distillation [12] as a tool to
study this aspect. It is based on the idea that distilling
knowledge from ensemble of teacher networks makes the
student model stronger. We use our benchmark models as
teachers in different combinations to analyze whether stu-
dent learns orthogonal information on four different axes:
1) different architectures as teacher within a dataset size,
2) teachers with different complexities in a pretext task, 3)
models from multiple source datasets, and, 4) same archi-
tecture as teachers from multiple pretext tasks. Figure 6
summarizes the observations for each aspect.

Observations: Although teacher network performance
improves with subset, gain in complementary information
reduces beyond 30k (Fig. 7). However, distillation does
help in the reduction of training time with a significant im-
provement in performance which is evident from Fig. 6(a).
Independent of the pretext tasks category smaller architec-
ture learns complimentary information and outperforms the
teacher whereas bigger architecture it’s task-dependent. Ir-
respective of task category whether transformation-based or
contrastive, each task learns corresponding features from
both source datasets and outperforms the teacher. Stu-
dent network outperforms standalone spatio-temporal net-
work performance in both contrastive and non-contrastive
domains.
Inference: (i) Knowledge can be distilled from different
architectures for a given subset size, (ii) Knowledge from
different source datasets brings in complementary informa-
tion, and (iii) Orthogonal features are learned across differ-
ent categories of pretext tasks.

5. Lessons learned

With all the analysis along studied axes, we learned a
few lessons in-between these axes such as: (i) Contrastive
tasks are fast learners but are also most susceptible to noise.
(ii) An increase in dataset size or complexity does not help
smaller models in learning better spatio-temporal features
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Approach NxW/H Backbone Dataset UCF101
Generative

VIMPAC [50] 10x256 ViT-L HTM 92.7
VideoMAE [53] 16x224 ViT-B K400 91.3

VideoMAE † [53] 16x112 R21D-18 K400 76.2
Context

PacePred [60] 16x112 R21D-18 K400 77.1
TempTrans [25] 16x112 R3D-18 K400 79.3

STS [57] 16x112 R21D-18 K400 77.8
VideoMoCo [38] 16x112 R21D-18 K400 78.7

RSPNet [8] 16x112 R21D-18 K400 81.1
TaCo [5] 16x224 R21D-18 K400 81.8

TCLR[11] 16x112 R21D-18 K400 88.2
CVRL† [41] 32x224 R21D-18 K400 92.9

TransRank [13] 16x112 R21D-18 K200 87.8
Multi-Modal

AVTS [31] 25x224 I3D K400 83.7
GDT [39] 32x112 R21D IG65M 95.2
XDC [3] 32x224 R21D K400 84.2
Ours ∗ 16x112 R21D-18 K400-30k 97.3

Table 6: Comparison with previous approaches pre-trained
on K400 full set. Ours ( ∗ best performing) is RSPNet pre-
trained on 30k subset of K400. † modified backbone.

but these features are more robust to noise. (iii) Temporal
tasks are relatively more difficult to learn since looking at
the correlation between time of training, increase in dataset
size, and complexity, the performance gain is minimal in
each of this axis. It means this category of tasks is actually
difficult to solve. (iv) Spatio-temporal pretext tasks improve
with the increase in complexity and dataset size (if model
permits), and their behavior to learn better spatio-temporal
features is independent of data distribution.

Using these lessons, we further do more analysis in fea-
ture space. From there, we observe within an axis of com-
parison how models learn orthogonal information. Based
on those observations, we analyze if we can push the perfor-
mance for downstream tasks. We look into two downstream
tasks: action classification and clip retrieval.
Action Classification For this task, the model is fine-
tuned end-to-end on downstream datasets, on UCF101 and
HMDB51. In Table 6, we compare our best-performing
model with other previous state-of-the-art approaches. Ob-
servations: With only 30k videos compared to 200k+
videos used by other pretext tasks, we show that our model
outperforms by a good margin on UCF101 against single
and multi-modal approaches. We got competitive results on
HMDB51 with a score of 51.5%.
Clip retrieval For this downstream task, we generate
the feature vectors using pretraining weights. The near-
est neighbor is found by measuring the cosine distance be-
tween test and train feature vectors. We show analysis on
UCF101 and HMDB51, with different source data distri-
butions, K400 and SSv2. Observations: Spatio-temporal
task still outperform other categories independent of source
data distribution similar to what we observe earlier. Con-
trastive learns better appearance features during the pre-

(a) UCF101 (b) HMDB51

Figure 8: Top@5 Clip Retrieval - R21D on a) UCF101 and
b) HMDB51, pre-trained on K400 and SSv2 - 30k subset.
training stage given both downstream datasets are appear-
ance based. Temporal tasks have almost similar perfor-
mance pre-trained on either of the source datasets, which
shows even with an appearance-based dataset as a pre-train
dataset, the task is not focusing much on spatial features.

Recommendations Looking into several factors, here we
provide some recommendations to set up the recipe for self-
supervised learning: 1) Training speed: If training time is a
concern, contrastive tasks can help in reducing the pretrain-
ing time. The only downside is, they could be less robust
against data noise. 2) Data distribution: It is always bet-
ter to use a spatio-temporal pretext task irrespective of the
data distribution. However, if that is not an option, pretext
task should always be aligned with the nature of pretraining
dataset. 3) Model capacity: If model capacity is limited,
there is no benefit of increasing pretraining dataset size and
using complex pretext tasks. 4) Robustness: If best perfor-
mance is the goal we should use a bigger model, otherwise
if performance needs to be maintained in noisy data even
allowing low performance then a smaller capacity model
is preferable. 5) Performance: Pretext tasks learn com-
plementary features across model architectures, pretraining
datasets, pretext tasks, and tasks complexity, therefore, this
complementary knowledge can be distilled to obtain strong
spatio-temporal features.

6. Conclusion
In this study, we explore different parameters for self-

supervised learning in video domain. We set a benchmark
which provides an intuitive task categorization and enables
a better comparison of different pretext tasks. Such an anal-
ysis has never been explored for video understanding to the
best of our knowledge. We presented several interesting in-
sights which will open up new directions for the research
community. We also demonstrate the usefulness of some of
these insights where we obtain state-of-the-art performance
on video action recognition using merely 10% pretraining
dataset when compared with existing methods. We believe
this benchmark study will help the research community in
better understanding of self-supervised learning in video
domain. All the results and findings in this benchmark
will be publicly released at https://thecodeeagle.
github.io/webb/.
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